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An examination is made of the use of adjoint functions in heat con-
duction and convection theory, Formulas of perturbation theory are
obtained for steady and unsteady cases, an interpretation of the phys-
ical meaning of adjoint temperature is given, and some applications
of the theory are discussed.

The use of adjoint functions and importance func-
tions in neutron transport theory [1-3] has proved
very fruitful because of formulas of the theory of per-
turbations and the possibility of more general treat-
ment of variational problems concerning the optimum
distribution of materials in media where there is ra-
diation transfer [4]. The possibility is discussed be~
low of using the technique of adjoint functions in the
theory of heat transfer by means of conduction and
convection.

1. We will examine the case of a steady tempera~-
ture distribution in a heat-release element (HRE),
cooled by a heat carrier at fixed temperature. The
process is described by the heat conduction equation

[5]
—div(AVY) =¢, )

with the Newton boundary condition at the outside
boundary of the HRE

—AVal] = 2|, (2)

Inside the HRE conditions are symmetrical and the
temperature is finite, the latter being measured from
the temperature of the carrier.

We formally write the equation [6] adjoint to (1):

—div v ) = p. (3

We call the function t¥*(r) the adjoint temperature and
explain its physical meaning and that of p(r) below.

It is not difficult to verify that the left sides of (1)

and (3) are adjoint, if for t*(r) there occurs the bound-
ary condition

AV, I* ] =gl
Vat*|, =ut*, . (4)

In fact, multiplying (1) and (3) by t*{r) and t(r), re-
spectively, subtracting the equations obtained one

from another, and integrating over the whole volume
of the HRE, we obtain

g[— t* div (MY ?) + Ediv(A Y )] dV =
—-J * ——
Vf g t+dv ,iptdv. (5)

Transforming the left side of this equation with the
aid of the relation div(pA)= @divA + (A, yo), and

using the Gauss theorem, we find

i5;[_ t*div (A 1)+ tdiv (L y i) dV =

=6 (— AVt + EAY,1¥)dS =
S

— 1t (_’”_Vf_t_{__}”_vﬁ_)dszo
Ky

t*
when conditions (2) and (4) are fulfilled. Therefore,
éqvt*dl/ = | ptdV =1, (6)
v
and we may construct a theory of perturbations for
the functional I. To this end we assume that in the

HRE there has been an arbitrary perturbation of all
the parameters

Ad(r) =4 () — (1),

Aa(ry =a' (rg —a(ry),

Ag, () =g, (1) —q, (1),
Ap(r)==p (t)—p(©), (7)

in such a way that the temperature has changed from
t(r) to t'(r), Writing down the "perturbed™ Egs. (1)
and (2) along with the conjugates (3) and (4), in which
only the parameter p(r) is perturbed, and carrying
out a cross multiplication of the equations by t*(z)
and t'(r), a subtraction and an integration, we find
the desired expression for the variation of the func-
tional after simple transformations:

Al = [(p't' — pt)dV = § Ag,t¥dV —
v 14
— (A (v, VI¥)dV —§Aatt*ds. (8)
Vv S

We note that in a number of practical cases it is con~
venient to use the formula for AI/I', since the linear-
fractional functional is less sensitive to inaccuracies
in the quantity t'(r),

We will analyze the physical meaning of the ad-
joint temperature t¥(r). We assume that the Green's
function ®*(r;ry) has been found for the adjoint equa-
tion, i,e., the solution of (3) and {4) under the as-
sumption

p(r) = 8(r—ry,). 9
Then in the more general case we have

1 (r) = é 8% (r; 1) p (ro) dV,. (10)

Analogously, if the Green's function @(r;ry) has been
found for (1) and (2), then in the general case

1) = ,} 8(r; 1) q, (r)) dV,. (11)

Substituting (10) and (11) into (6), we obtain, after
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changing the order of integration
{ P Vo[ 6% (1 1)q, () dV =

= {/ p(rydv J 8 (r; 10)q, (ro) dVo. (12)

From this relation, after replacing the variable of
integration ry by r, we obtain the reciprocity theorem
for the Green's functions

6% (r; T} =0 (ry; 1). (13)

The analogous reciprocity theorem for differential
equations of the second order is well known in mathe-
matics [6] and was proved in [2] for the kinetic equa-
tion of radiative transfer.

If follows from (13) that in the case of the action
of a single heat source and when p(r) = 6(r — ry), the
adjoint temperature at a given point r is the temper-
ature at the point ry, if the heat source is shifted
from the point ry to the point r. In the more general
case of the value of the parameter p(r) we obtain,
with the aid of (10) and (13), the following relation:

t*(r) = {/@(ro; r) p(re) dVo. (14)

Thus, the adjoint temperature t*(r} is some linear
functional of the temperature arising from the action
of a source of unit power and depending on the coor-
dinates of the location of this source. By analogy with
the terminology used in neutron physics, the function
t*(r) may also be called the importance function of
the heat source with respect to the functional I,

We note that in the special case of steady heat con-
duction in a motionless medium, the differential equa-
tions and the boundary conditions for the Green's
functions O(r;ry) and ©*(r; ry) are identical in form.,
This means that the solution of the two equations is
identical, i.e.,

0 (r; 1) = B*(r; ). (15)

Comparing (13) and (15), we find an important tem-
perature reversibility relation for the case examined:

O(r; ry) = 0O (ry; 1). (16)

We will point out some other special cases of the func-
tional I. I p(r) = adé(r — rg), functional I is equal to
the heat flux in the HRE at the point rg on its surface.
In the case p = const the functional I is proportional

to the mean integral temperature of the HRE,

3. We will examine a more general case—an un-
steady problem of cooling of a HRE by a heat carrier
flowing in a channel. The process of heat transfer by
means of conduction and convection in this system is
described by the equation [5]

ot SHdivii
Cy——+ Cy(W,yt)—diviAyt)=¢q,.  (17)

The parameters appearing in (17) are piecewise-con-
tinuous functions of the coordinates. The boundary
conditions of the problem are the requirements of con~
tinuity of temperature t(r, 7) and of heat flux —Ay,t
at the interface between the HRE and the heat carrier,

137

the finiteness of the condition of symmetry of tem-
perature, and the condition of Newtonian heat loss at
the outer surface of the channel —Avptlsgy, = @t|Sop.
The initial condition may always be represented in the
form

t(r, —~ o) =0. (18)

The equation adjoint to (17) has the form

—CY—?"“CY(W Vi) —div(hy 1) = p. (19)
T

The boundary conditions for the adjoint temperature
t*(r, 7) are the same as for t(r, 7), and the adjoint
initial condition has the form

#*(r, o) =0. (20)

If a certain space-time perturbation of all the param-
eters takes place in the system, then the formula of
the theory of perturbations for the functional

= thdVdr= ffﬂt*dv‘”' (21)
Cy Cvy
e ¥V —w V

as may easily be shown, may be written in the follow-
ing form:
AI=S§(Lt’ )dVd gjrf'z*A( AVt +
Cy
—oV —0
+{ [ (AW, V) dvdt + [ {eedivwavds —
—o .V —~c V
K T * 4
~S‘Hw(w' f,)—x(—v’f*, e’L\)}dvm—
R C'y Cy,
St = A( )dsm - (d{ 5 HEWdS —

S —® Fout

-

~
- | t*t'W/,'ldS] : (22)
Fin
In deriving (22) we used the Gauss theory and omitted

the term y ¢ #'t*W dSdv because the normal compo-

nent of flow Velocﬂ:y at the wall of the channel is zero.
We will point out some special cases of the func-
tional (21). If p(r,7) = Cyd(r — ry) 6(t — 7p), then the
functional of perturbation theory is the temperature
t(rg, T¢). If we assume that p(r,T) = Cyad(r — rg)x
X 8(T = T¢), then the functional of the problem becomes
the heat flux at the point rg of the surface at time 7.
We may also make the functional of the problem the
heat content of the stream (local, averaged over the
section or over the volume), for which we must intro-
duce the velocity distribution in the expression p(r,7).
Similarly, we may, in the case examined, prove the
reciprocity theorem for the Green's functions

®(ry T5 r(]) TO) = 8*(rl)y TO; rv T) (23)
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and interpret the physical meaning of the adjoint tem-
perature with the help of the relation

t*r, ©) =

=j‘ j PO %) e, g 1, 1) dVedzy, (24)
A To, To)Y (Yo, To)

It is evident that the condition of temperature rever-
sibility, analogous to (16), does not hold in the gen-
eral case,

4. We will discuss some examples of the use of
perturbation theory. Formulas (8) and (22) make it
possible, using the unperturbed functions that have
been found, t(r, 7) and t*(r, 7), to find the change in
the value of I with change in the parameters of the
problem, in the first approximation. This is especial-
ly important when direct solution of the problem is
difficult, even for numerical calculation (for example,
when the perturbation is local in nature) or the re-
quired accuracy cannot be obtained, In a number of
cases, even if the perturbed problem is solved di-
rectly, a more accurate value of A7 may be calculated
from (8) or (22) by substituting t' and t* Typical
cases when it iIs useful to apply perturbation theory
are cases of approximate solutions of problems in
heat conduction theory on the basis of simplifying as-
sumptions as to the nature of the physical constants.
In these cases we may take an estimate of the error
in the value of the functional of interest from the as-
sumption made. Then we can develop the theory of
high-order perturbations, which is especially suitable
if the adjoint function is expressed analytically.

Formulas (8) and (22) are also useful for problems
in which it is difficult to find a direct solution because
of an angular dependence of the heat removal or the
heat-generating sources. We will examine as an ex-
ample the steady problem of cooling of an infinitely
long cylindrical HRE with internal heat sources and
heat loss according to Newton's law. Taking into ac-
count that the filament-shaped heat source is located
at the point with coordinates ry, ¢;,, we will find the
Green's function for the temperature in this problem.
Assuming that A and « do not depend on the coordi-
nates, we obtain the following solution:

1 1
2maR

s L\ _eRn ( 1 _J_)(f_o)k(f__)k
" 2nh ~ktoRA \aRA & J\R)\R)*
1 r\?

In| (-1
4z n[(R)+

\2
+(%> —z—lg_%cos(@_%).]. (25)

O, @ ro, ) =0 (r, @; 1y, ) =

X cosk (¢ — @g) —

We note that (25) is symmetrical with respect to in-
version of the source coordinates and the point of
temperature observation [formula (16)]. We will con-
sider the expression for t(r) with constant qy, A and
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@ as the zero-order approximation
o (r) = g, (R®— r2)/4h + q,R/2a. (26)

Formula (8), which allows one to find a correction
for the temperature in the first approximation at an
arbitrary point (ry, %), due to qy, A and @ not being
constant, has the form

Aty (re, go) = tll(fo, Qo) — lo(re) =
2=

R
=J‘ Aqv
Q

Q

(r, @)8*(r, @; 15, Qo)rdrdp—

i3

R 2
# .
q—f An(r, g)r 280 90 @) gy

or

N
;,:

quz 2n i
: J‘Aa(cp)@ (R, 9;r0p,)d ¢. (27
0

From the value of t;(ro, @) found we can improve the
accuracy of ANr,®) and Ax(¢), after which we find
Aty(ry, ¥), and so on. The correction in the (n + 1)-th
approximation in terms of the temperature in the n-th
approximation is

Aty (ro, o) = i;_‘,, (ro, Po) —1y(ro) =

2r

R
={[aq¢. 9o

0

, @ To, Qo)rdrdo —

R 2= ,

: 6 1 9) 30 (r, 9; ro, @)

S jv AM(r, @ +
or or

0

0

ot (r, ® :
1 04, 9) « AO*(r, g; 15, p) rdrd g —
r* deg de

=

-~ j Ac@) (R, 7)O%(R, 9; 70 go) Rd . (28)

0

We will illustrate the convergence of the above method
of calculating higher-order perturbations by an ex-
ample amenable to exact examination, To this end we
will examine the previous problem under the assump-
tion that there is no angular dependence of any of the
parameters, It is not difficult to find the Green func-
tion of this problem:

1 R 1
—In — + r<r
27\ Ty 2n0R S
O(r; r =0%(r; rg) = 29)
! 1 R 1 r>r,.
2n r 2noR

We calculate from (8) the change in ty(r) due to the
variable A'[t'(r)] = A(r):

At(rg) =1 (r)) —ty(ry) =

——\SVAM )iii-(}@—Q rdr, (30)
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where

Jo* [

_ rr,y
ar |— t/2=Ar

r>» .

AA) =2 ()=,

It can be shown that, for the problem examined,
R

q,
Ar1(70)=‘——4’:—7~.‘5kA—l—-k(r)2:trdr,
R o
Aty = — — S A [1— Ak ]2=rrdr,
4n) A A
e (31)
G AT AL )T
= AN _ AU -
Aty (r) = 4@} - E[ y ]2:rrdr—
I k=0
R
=—~—(I—V—S‘M{1—[—M]n}2mdr
=0 ) A (D A ’

Te

In the last relation use was made of the formula for
the sum of terms of a geometric progression. If the

ratio of this progression < 1,thenasn— =

we have
R

4 [ MEO—)
A tn (fo) = Y j‘ x' (r) 2Rfdf. (32)

Te

It is not difficult to verify that this passage to the
limit gives an exact relation. For this we solve the
exact heat conduction equation

s d dt’ dr dt’
ANy —|r— =
© dr (r dr ) + dr r dr br. (33

Taking account of the conditions

L - 0, —A a)_ at'| ,
d{ r=0 dr R 1R
we obtain
R
, gR 9y Ao
t'{r)= r'dr'.
© 2a * 2\ j‘ A(r) 34)

r

Using this relation to determine the temperature t(r)
corresponding to the case A' = A = const, we find

Aty =t' () —t()=

R
. 5 M) —h 2nr'dr. (35)
4 A

r

It is seen that expressions (32) and (35) coincide iden-
tically.

5. We will enumerate some other cases where it
is useful to apply perturbation theory, Formula (22)
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permits us to simplify the problem of finding the un-
steady temperature field in a HRE with a shell and
process layers, since the effect of the latter may be
considered to be a local perturbation of the quantities
A, Cvy and qy.

Perturbation theory allows us to calculate correct-
ly the effect of various tolerances and deviationsfrom
nominal (inaccuracy and scatter in the thermophysical
constants, in the heat release sources, in the heat
transfer coefficient, in the thicknesses of the mate~
rials, etc.) on the temperature of the HRE or on the
heat flux at a dangerous point.

Formulas (8) and (22) may undoubtedly be of ad-
vantage to the experimenter. For example, in calcu-
lating the true temperature of the wall of a working
section according to the readings of thermocouples
embedded within the wall, he may evaluate the influ-
ence of local variationof A or of qyin the places where
the thermocouples have been embedded on the local
variation of the heat flux,

NOTATION

Alr,7) isthethermal conductivity; t(r,7) is the tem~
perature; t*(r,7)isthe adjoint temperature; qy(x,7) is
the density of heat release sources; p(r,7) is a para-
meter of adjoint equation; r is the generalized co-
ordinate; T is time; od¥g, 7) is the heat transfer
coefficient; I is the linear functional of temperature;
o(r, T; vy, 7o) and O*(r, T; Ty, Tg) is the Green's function
for t(r, 7) and t¥*(r, 1); Cy(r, 7) is the volume specific
heat; W(r, 7) is the vector distribution of flow veloc-
ities; V, S are the volume and surface areas of body;
R is the radius of HRE; r, ¢ are the radial and angular
coordinates; Fijn, Fout are the inlet and outlet flow
areas of channel,
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